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14 Edible Coatings

Henriette Monteiro Cordeiro de Azeredo

14.1  INTRODUCTION

Considerable attention has been given to edible food packaging, which is intended to 
be an integral part of and to be eaten with the food product; thus, they are also inher-
ently biodegradable (Krochta, 2002). The increasing interest and research activity 
in edible packaging have been motivated by both increasing consumer demand for 
safe, convenient, and stable foods and also awareness of the negative environmental 
impacts of nonbiodegradable packaging waste. Although the terms edible films and 
edible coatings are sometimes referred to as synonyms, there is a difference in that 
films are preformed separately and then applied to food surface or sealed into edible 
pouches, whereas coatings are formed directly onto food surfaces.

Edible films and coatings have similar functions as those of conventional packag-
ing, acting as barriers against water vapor, gases, and flavor compounds and improv-
ing structural integrity and mechanical-handling properties of foods. Although 
edible films and coatings are not meant to entirely replace conventional packag-
ing, the efficiency of food protection can be enhanced by combining primary edible 
packaging and secondary nonedible packaging. Although the basic functions of 
edible coatings are similar to those of conventional packaging, their use requires 
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an external packaging because of handling and hygienic reasons (Debeaufort et al., 
1998). In this context, edible coatings can reduce conventional packaging require-
ments and waste, since they are able to improve overall food quality, to extend shelf 
life, and to improve economic efficiency of packaging materials.

Materials used for edible coatings are usually not as effective as petroleum-
derived polymers in terms of mechanical and barrier properties. However, such 
properties are not especially important for fruits and vegetables, since a moderate 
gas permeation is required in order to allow the product to maintain respiration rates 
at a minimum but not negligible level.

According to Guilbert and Biquet (1986), wax coatings have been used to delay 
dehydration of citrus fruits in China since the twelfth century. However, only in the 
1930s have emulsions of oils or waxes in water been developed to be spread on fruit 
surfaces to improve their appearance, as well as control the ripening process, and to 
retard water loss (Debeaufort et al., 1998).

Coating fruits is not yet a common process in the food industry. Industrial fruit 
coating consists mostly in keeping fruits in motion (e.g., by vibration or rolling) 
and simultaneously applying the coating dispersion so that the fruits are exposed to 
it. Spray coating is the most commonly used technique for applying food coatings, 
including a batch tank and spraying nozzles to deposit the coating dispersion on food 
pieces as they move over a conveyor roller (Debeaufort and Voilley, 2009), which 
should drive them to a drying step. For coating dispersions with high viscosities, 
screw or drum coaters are more indicated.

This chapter presents a review of developments in edible coatings and their appli-
cations for fresh and minimally processed (fresh-cut) fruits.

14.2  REQUIREMENTS FROM A COATING MATERIAL

The characteristics required from an edible coating depend on the specific require-
ments of the product to be coated, including the primary degradation modes to which 
it is most susceptible. Fresh and minimally processed fruits have complex require-
ments concerning packaging systems, since such products are still metabolically 
active. The main requirements for a fruit coating are described in the following:

 1. Moderately low permeability to oxygen and carbon dioxide in order to slow 
down respiration and overall metabolic activity, retarding ripening and 
its related changes. On the other hand, the metabolic activity must not be 
reduced to a degree that creates anaerobic conditions, which promote physi-
ological disorders and accelerate quality loss (Kester and Fennema, 1986; 
Debeaufort et al., 1998). Edible coatings for fruits should control the ripen-
ing by reducing oxygen penetration in the fruit rather than by decreasing 
CO2 and ethylene evaporation rates, that is to say, the CO2/O2 permeabil-
ity ratio (related to selectivity) should be as high as possible. Proteins and 
polysaccharide coatings present much higher ratios (from 10 to 25) than 
those of conventional plastic films (lower than 5.73) (Debeaufort et al., 
1998). The decreased metabolic activity provided by edible coatings has 
also been known to retard softening changes (Conforti and Zinck, 2002; 
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Zhou et al., 2011), which result from the loss of turgor pressure and degrada-
tion of cell walls, contributing to a decrease in fruit brittleness and firmness 
(Zhou et al., 2008). The degradation of cell wall structure has been attrib-
uted to activity of enzymes such as pectin methylesterase, cellulase, and 
polygalacturonase on polysaccharides present in the cell wall (Goulao and 
Oliveira, 2008).

 2. Low water vapor permeability in order to retard desiccation (Garcia and 
Barret, 2002). In the case of minimally processed fruits, this is espe-
cially difficult, since the product surface usually has a very high water 
activity, which tends to decrease the performance of hydrophilic coatings 
(Hagenmaier and Shaw, 1992).

 3. Sensory inertness or compatibility. Edible coatings were traditionally sup-
posed to be tasteless so would not interfere with the flavor of the product 
(Contreras-Medellin and Labuza, 1981). Alternatively, they may have sensory 
properties compatible with those of the food. For instance, fruit purees have 
been studied as film-forming edible materials (McHugh et al., 1996; Senesi 
and McHugh, 2002; Rojas-Graü et al., 2006, 2007a; Azeredo et  al., 2009) 
which can be used as edible coatings for fruits due to the presence of film-
forming polysaccharides in their compositions. Figure 14.1 presents a photo-
graph of an edible film elaborated with acerola puree and alginate.

14.3   CHEMICAL COMPOSITION OF EDIBLE COATINGS 
AND THEIR APPLICATIONS TO FRUITS

Edible films and coatings may be classified according to the kind of material from 
which they are derived. Each chemical class has its inherent properties, advantages, 
and limitations for being used as films.

FIGURE 14.1  Sample of an edible film from acerola puree and alginate.
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14.3.1  Polysaccharide-Based coatings

Polysaccharides are long-chain biopolymers formed from mono- or disaccharide 
repeating units linked by glycosidic bonds. They are widely available and usually 
have low cost. Most polysaccharides are neutral, although some gums are negatively 
charged. As a consequence of the large number of hydroxyl and other polar groups 
in their structure, hydrogen bonds play important roles in film formation and charac-
teristics. Negatively charged gums, such as alginate, pectin, and carboxymethyl cel-
lulose (CMC), tend to present some different properties depending on the pH (Han 
and Gennadios, 2005).

Polysaccharide films are usually formed by disrupting interactions among poly-
mer segments during coacervation and forming new intermolecular hydrophilic 
and hydrogen bonds upon evaporation of the solvent (Janjarasskul and Krochta, 
2010). Because of their hydrophilicity, polysaccharide films provide a good bar-
rier to CO2 and O2; hence, they retard respiration and ripening of fruits (Cha and 
Chinnan, 2004). On the other hand, similarly to other hydrophilic materials, their 
polarity determines their poor barrier to water vapor (Park and Chinnan, 1995) as 
well as their sensitivity to moisture, which may affect their functional properties 
(Janjarasskul and Krochta, 2010).

14.3.1.1  Starches
Starches are polymers of d-glucopyranosyl, consisting of a mixture of the predomi-
nantly linear amylose and the highly branched amylopectin (Figure 14.2). Native 
starch molecules arrange themselves in semicrystalline granules in which amylose 
and amylopectin are linked by hydrogen bonding. When heat is applied to native 
starch in presence of water, the granules swell and hydrate, which triggers the “gela-
tinization” process, characterized by the loss of crystallinity and molecular order, 
followed by a dramatic increase in viscosity (Kramer, 2009).

Amylose responds to the film-forming capacity of starches, since it forms cohe-
sive and relatively strong films (Han et al., 2006). On the other hand, amylopectin 
films are brittle and noncontinuous, since its branch-to-branch structure interferes 
with intermolecular associations, disrupting film formation (Peressini et al., 2003). 
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FIGURE 14.2  Chemical structure of a starch fragment.
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Indeed, García et al. (1998), comparing quality of strawberries coated with starches 
from different sources, observed a significant effect of amylose content on color, 
weight loss, and firmness of coated strawberries.

Application of starch films is limited by two major drawbacks. The films are 
often very brittle, requiring the presence of plasticizers to improve their flexibility 
(Peressini et al., 2003; Mali et al., 2004). Moreover, the high hydrophilicity of starch 
causes its barrier properties to decrease with increasing relative humidity; therefore, 
starch is not the best option when working with minimally processed fruits (Olivas 
and Barbosa-Cánovas, 2009).

14.3.1.2  Cellulose and Its Derivatives
Together with starch, cellulose and its derivatives (such as ethers and esters) are 
the most important raw materials for elaboration of edible films (Peressini et al., 
2003). Cellulose, the most abundant natural polymer on earth, is an essentially linear 
natural polymer of (1→4)-β-d-glucopyranosyl units (Figure 14.3). Its tightly packed 
polymer chains and highly crystalline structure make it insoluble in water. Water 
solubility can be conferred by etherification; the water-soluble cellulose ethers, 
including methyl cellulose (MC), hydroxypropyl cellulose (HPC), hydroxypropyl-
methyl cellulose (HPMC), and CMC, have good film-forming properties (Cha and 
Chinnan, 2004; Janjarasskul and Krochta, 2010). An MC coating has been demon-
strated to retard softening and to reduce respiration rates of avocados (Maftoonazad 
and Ramaswamy, 2005).

14.3.1.3  Anionic Polysaccharides
Pectins are water-soluble anionic heteropolysaccharides composed mainly of 
(1→4)-α-d-galactopyranosyluronic acid units, in which some carboxyl groups of 
galacturonic acid are esterified with methanol (Figure 14.4). High-methoxyl pec-
tins (HMPs) have a degree of esterification (DE) above 50%, whereas low-methoxyl 
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pectin (LMP) has a DE below 50%. The ratio of esterified to nonesterified galact-
uronic acid determines the behavior of pectin in food applications, since it affects 
solubility and gelation properties of pectin (Baldwin et al., 1995). HMP forms gels 
with sugar and acid, whereas LMP forms gels in the presence of divalent cations 
such as Ca2+, which links adjacent LMP chains via ionic interactions, forming a 
tridimensional network (Janjarasskul and Krochta, 2010).

Alginates, which are extracted from brown seaweeds, are salts of alginic acid, a 
linear copolymer of d-mannuronic and l-guluronic acid monomers (Figure 14.5), 
containing homogeneous poly-mannuronic and poly-guluronic acid blocks (M and 
G blocks, respectively) and MG blocks containing both uronic acids. These highly 
anionic polysaccharides suffer instantaneous gel formation by reacting with di- or 
trivalent cations, similarly to LMP. Calcium ions, especially effective, have been 
applied as gelling agents (Cha and Chinnan, 2004). Calcium ions pull alginate 
chains together via ionic interactions, after which interchain hydrogen bonding 
occurs (Kester and Fennema, 1986). Films can be formed either from evaporating 
water from an alginate gel or by a two-step procedure involving drying of alginate 
solution followed by treatment with a calcium salt solution to induce cross-linking 
(Janjarasskul and Krochta, 2010). The strength and permeability of films may be 
altered by changing calcium concentration and temperature, among other factors 
(Kester and Fennema, 1986). Apples previously immersed in calcium chloride and 
coated with alginate presented lower weight loss, softening, and browning when 
compared to untreated fruits (Olivas et al., 2007).

14.3.1.4  Chitosan
Chitosan, a linear polysaccharide consisting of β (1→4) linked residues of N-acetyl-2-
amino-2-deoxy-d-glucose (glucosamine) and 2-amino-2-deoxy-d-glucose (N-acetyl-
glucosamine) (Figure 14.6), produced by partial deacetylation of chitin, presents a 
cationic character which confers unique properties on this polysaccharide, such as 
antimicrobial activity and the ability to carry and slow-release functional ingredi-
ents (Coma et al., 2002). Chitosan coatings were effective in extending shelf life of 
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several fruits; reducing rates of water loss (Dong et al., 2004; Hernández-Muñoz 
et al., 2006; Chien et al., 2007; Lin et al., 2011), ascorbic acid loss (Dong et al., 2004; 
Chien et al., 2007), softening (Ali et al., 2011), and enzymatic browning (Dong et al., 
2004; Jiang et al., 2005); and delaying the ripening process by decreasing respira-
tion rates (Ali et al., 2011; Lin et al., 2011). Moreover, they were reported to have 
retarded microbial growth in fruit surfaces (Hernández-Muñoz et al., 2006; Chien 
et al., 2007; Campaniello et al., 2008). The polycationic structure of chitosan prob-
ably interacts with the predominantly anionic components (lipopolysaccharides, 
proteins) of microbial cell membranes, especially Gram-negative bacteria (Helander 
et al., 2001).

14.3.1.5  Some Novel Polysaccharide Coatings
Ali et al. (2010) evaluated the performance of a novel coating based on gum arabic 
on tomato fruits. When compared to uncoated fruits, tomatoes coated with 10% 
gum arabic presented significant lower rates of changes in weight, color, firmness, 
titratable acidity, soluble solids content, ascorbic acid content, and decay percentage. 
Maqbool et al. (2010) observed that, although gum arabic alone has not presented 
antifungal effects against Colletotrichum musae (the causal agent of anthracnose) 
in bananas, composite coatings obtained from combining gum arabic with chitosan 
presented better antifungal effects when compared to chitosan alone. However, the 
authors did not present an explanation for the observed synergistic effect of gum 
arabic and chitosan.

Some new edible coatings have been obtained from mucilages, which are het-
eropolysaccharides obtained from plant stems. Prickly pear cactus mucilage as an 
edible coating was demonstrated to have extended shelf life of strawberries, retard-
ing their softening (Del-Valle et al., 2005). Aloe vera mucilage, composed mainly by 
polysaccharides, has been used as a coating for grapes (Valverde et al., 2005) and 
sweet cherries (Martínez-Romero et al., 2006), retarding their respiration and ripen-
ing rates, softening, weight loss, and color changes.

14.3.2  Protein-Based coatings

Proteins are linear, random copolymers built from up to 20 different monomers. The 
main mechanism of formation of protein films involves denaturation of the protein 
initiated by heat, solvents, or change in pH, followed by association of peptide chains 
through new intermolecular interactions (Janjarasskul and Krochta, 2010).
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While hydroxyl is the only reactive group in polysaccharides, proteins may 
be involved in several possible interactions and chemical reactions (Hernandez-
Izquierdo and Krochta, 2008), such as chemical reactions through covalent (peptide 
and disulfide) bonds and noncovalent (ionic, hydrogen, and van der Waals) interac-
tions. Moreover, hydrophobic interactions may occur between nonpolar groups of 
amino acid chains (Kokini et al., 1994).

The most peculiar properties of proteins compared to other film-forming 
materials are denaturation, electrostatic charges, and amphiphilic character. 
Protein conformation can be affected by many factors, such as charge density and 
hydrophilic–hydrophobic balance (Han and Gennadios, 2005). Proteins have good 
film-forming properties and good adherence to hydrophilic surfaces (Baldwin et al., 
1995). Protein-derived films provide good barriers to O2 and CO2 but not to water 
(Cha and Chinnan, 2004). Their barrier and mechanical properties are impaired by 
moisture owing to their inherent hydrophilic nature (Janjarasskul and Krochta, 2010).

Gelatin is a substantially pure protein food ingredient, obtained by a mild heat 
treatment of collagen under acidic or alkaline conditions, when collagen is partially 
denatured, but recovers part of its triple helix structure upon cooling. On dehydra-
tion, films are formed with irreversible conformational changes (Badii and Howell, 
2006; Dangaran et al., 2009).

Total bovine milk proteins consist of about 80% casein and 20% whey proteins. 
Edible films and coating from casein, whey proteins, and total milk proteins have been 
reported. Simple milk protein films provide good barriers to gases because of their com-
plex intermolecular bindings (Chen, 1995). Caseinate films are water soluble, although 
the use of a buffer solution at the pI of casein results in water-insoluble films (Krochta 
et al., 1990). Avena-Bustillos and Krochta (1993) observed that barrier properties of 
casein may be enhanced by cross-linking with calcium ions or by adjusting its pH to the 
isoelectric point. Coatings from both calcium caseinate (Le Tien et al., 2001) and whey 
proteins (Le Tien et al., 2001; Pérez-Gago et al., 2003) delayed browning of apples, 
which was attributed to the oxygen barrier of the coatings and/or to its antioxidative 
properties (Pérez-Gago et al., 2003). Whey protein coatings enhanced the appearance 
of plums by creating glossy surfaces and improved their firmness (Reinoso et al., 2008).

Zein, the prolamin (alcohol-soluble) fraction of corn protein, has been used in coating 
formulations (Cha and Chinnan, 2004). Zein coatings are usually prepared by dissolv-
ing zein in aqueous ethyl alcohol (Ghanbarzadeh et al., 2007). Zein is rich in nonpolar 
amino acids, with low proportions of basic and acidic amino acids. Its consequent water 
insolubility favors the water vapor barrier of its films (Dangaran et al., 2009).

Wheat gluten is composed mainly of gliadins and glutenins (alkali- and acid-
soluble) fractions. Gliadin, the viscous component, constitutes a heterogeneous 
protein group characterized by single polypeptide chains associated by hydrogen 
bonding and hydrophobic interactions, having intramolecular disulfide bonds. 
Glutenins form an extensive network of intermolecular disulfide bonds (Hernández-
Muñoz et al., 2003). Because gluten is water insoluble, a complex solvent system with 
basic or acidic conditions in the presence of alcohol and disulfide bond-reducing 
agents is required to prepare casting solutions (Cuq et al., 1998). Strawberries 
with gluten coatings presented lower weight loss and softening when compared to 
uncoated ones (Tanada-Palmu and Grosso, 2005).
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14.3.3  liPid coatings

Unlike other macromolecules, lipids are not biopolymers, being not able to form 
cohesive, self-supporting films. So, they are either used as coatings or incorporated 
into biopolymers to form composite films, providing a good water vapor barrier, 
thanks to their low polarity (Greener and Fennema, 1989).

Lipid-based edible films have variable behavior against moisture transfer, 
depending on their particular properties. Polarity of lipids depends on the distribu-
tion of chemical groups, the length of aliphatic chains, and the presence and degree 
of unsaturation (Morillon et al., 2002). Unsaturated fatty acids are less efficient to 
control moisture transfer because of their higher polarity when compared to satu-
rated ones. Indeed, Hagenmaier and Baker (1997) observed that coatings containing 
stearic or palmitic acids were more efficient to reduce desiccation of oranges than 
those with oleic acid.

Waxes are esters of long-chain aliphatic acids with long-chain aliphatic alcohols 
(Rhim and Shellhammer, 2005). They are more resistant to water diffusion than 
most other edible film materials because of their very low content of polar groups 
(Kester and Fennema, 1986) and their high content in long-chain fatty alcohols and 
alkanes (Morillon et al., 2002). There are a variety of naturally occurring waxes, 
derived from vegetables (e.g., carnauba, candelilla, and sugar cane waxes), minerals 
(e.g., paraffin and microcrystalline waxes), or animals—including insects (e.g., bees-
wax, lanolin, and wool grease)—while some other waxes are synthetically produced, 
such as carbowaxes and polyethylene wax (Rhim and Shellhammer, 2005).

Triglycerides or neutral lipids are esters of fatty acids with glycerol. Mono- and 
ditriglycerides (partial esters) can also be used as coating materials. Their func-
tional properties, especially water vapor permeability, are dependent on their chemi-
cal structures. Long-chain triglycerides are insoluble in water, whereas short-chain 
molecules are partially water soluble. Unsaturated fatty acids have significantly 
lower melting points and increased moisture transfer rates than the correspond-
ing saturated ones (Rhim and Shellhammer, 2005). Branching of acyl chain also 
results in increased water vapor permeability because of the increased mobility of 
hydrocarbon chains and less efficient lateral packing of acyl chains (Janjarasskul and 
Krochta, 2010).

Acetic acid esters of monoglycerides, called acetylated monoglycerides, have 
been also used as food-coating materials. Their moisture barrier tends to improve 
with increasing degree of acetylation, possibly because of removal of hydrophilic 
hydroxyl groups. According to Bourlieu et al. (2008), there are certain inconve-
niences about their use, such as undesirable aftertaste and the tendency of highly 
saturated acetylated monoglycerides to crack and flake during storage.

14.3.4  comPosite coatings

Multicomponent or composite coatings are usually made to explore the comple-
mentary advantages of each component as well as to minimize their disadvantages. 
Most composite coatings associate a hydrophobic compound (often lipids) and a 
hydrophilic structural matrix (Guilbert and Biquet, 1986). Since polysaccharides 
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and proteins are less permeable than lipids to gases, their presence in coatings is 
useful to reduce respiration rates and to retard fruit senescence, while lipids reduce 
desiccation.

Composite films and coatings can be produced as either bilayers or stable emul-
sions. In bilayer composite films, the lipid forms a second layer over the polysac-
charide or protein layer. On the other hand, in emulsion composite films, the lipid 
is dispersed and entrapped in the supporting biopolymer matrix (Pérez-Gago and 
Krochta, 2005).

García et al. (2000) demonstrated that lipid addition to starch films decreased 
their crystalline-amorphous ratio, which is expected to increase film diffusibility 
and, consequently, permeability. On the other hand, lipid addition also reduces the 
hydrophilic–hydrophobic ratio of films, which decreases their water solubility and 
therefore water vapor permeability.

The optimum lipid concentration in the preparation of composite edible coat-
ings should be determined by considering both the effect of decreasing the mois-
ture transfer rate and the physical strength of the films, since excessive levels of 
some lipid materials can result in the coating becoming brittle (Shellhammer and 
Krochta, 1997).

A gluten coating reduced softening and weight loss of strawberries, especially 
when lipids (beeswax, stearic, and palmitic acids) were incorporated. However, the 
lipid addition impaired the acceptance of the strawberries in terms of appearance and 
flavor (Tanada-Palmu and Grosso, 2005). Similarly, Vargas et al. (2006) observed 
that, although the addition of a lipid component (oleic acid) has improved the water 
vapor resistance of chitosan-coated strawberries, it has decreased their acceptance.

14.4  COATING/FRUIT SURFACE SUITABILITY

Film formation as a coating depends on two types of interaction: cohesion and adhe-
sion. Cohesion is related to attractive forces between molecules of film components, 
influencing the mechanical strength of films (Guilbert et al., 1996; Sothornvit and 
Krochta, 2005). The presence of ingredients incompatible with the main biopolymer 
in the film-forming dispersion causes the cohesion and the film strength to decrease 
(Han and Gennadios, 2005). Excessive cohesive forces result in brittleness, which 
may be overcome by addition of plasticizers. Adhesion, by its turn, is related to 
attractive forces between film and substrate; it is important for film casting and coat-
ing processes (Sothornvit and Krochta, 2005). A poor adhesion results in incomplete 
coating or easy peel-off of a film from the surface (Han and Gennadios, 2005).

For the optimization of a coating solution, the control of adhesion and cohesion 
coefficients is very important since the former promotes spreading of the liquid 
whereas the later promotes its contraction (Ribeiro et al., 2007).

The coating procedure involves wetting the fruit surface with a coating solution. 
An adequate coating solution spreads spontaneously on the fruit surface (Mittal, 
1997). However, it is hardly possible to have a coating solution/dispersion perfectly 
suited to the surface in terms of polarity and surface tension. Then, efforts should 
be made in order to find the best formulation possible in terms of compatibility with 
the surface. The interfacial tension between the coating solution and the fruit surface 
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must be estimated, based on the surface tension of both the surface and the coating 
solution and the contact angle between both.

Finding a suited coating solution can be a challenge. The lower the surface 
(or interfacial) tension of a solution, the higher its surface (or interfacial) activity 
(Gaonkar, 1991). Most solutions are water based, and water has a high surface 
tension (72.8 dyn cm−1), whereas most solid surfaces have lower surface tension 
(Nussinovitch, 2009). Since an adequate coating involves compatibility between the 
coating solution and the solid surface, the surface tension of the coating solution 
must be reduced in order to adjust it to the lower surface tension of the surface, thus 
lowering the interfacial tension and enhancing adhesion.

Surface-active agents, such as emulsifiers and other amphiphilic chemicals in 
the film-forming solution, reduce the surface tension of the coating solution, thus 
decreasing the difference between the solid surface energy and the surface tension 
of the coating solution and ultimately increasing the work of adhesion (Han and 
Gennadios, 2005). The surfactant Tween 80 was added to a chitosan coating solution 
in order to reduce its surface tension and enhance its wettability, improving its adhe-
sion to apple skin (Choi et al., 2002).

Another strategy which can be used to improve compatibility of hydrophilic coat-
ings with fruit surfaces is by means of chemical modification of biopolymers, by 
introducing hydrophobic groups into their structure. Hydrophobization has been suc-
cessfully used by Vu et al. (2011) to enhance compatibility of a chitosan coating to 
strawberry surface.

14.5  ACTIVE COATINGS FOR FRUITS

Besides their function as inert barriers to extend fruit stability, edible coatings can also 
interact with the coated fruit and/or the surrounding environment in a desirable way, 
thus constituting an active coating. Active properties of coatings may be related to 
release of compounds (e.g., antimicrobials and antibrowning agents) which can retard 
fruit degradation or to absorption/scavenging of undesirable compounds (e.g., ethylene) 
which might accelerate degradation. Edible coatings have been presented as excellent 
way to carry additives since they are able to maintain effective concentrations of the 
additives on the fruit surfaces, where they are mostly needed, reducing the impact of 
such chemicals on overall acceptability of the fruit (Oms-Oliu et al., 2010).

Incorporating antimicrobial compounds into edible coatings help preserve the 
quality of fresh-cut fruits, which are more perishable than the corresponding whole 
fruits, because of the skin removal, favoring microorganisms to invade and grow 
on product. Since antimicrobials are mostly needed on the product surface, their 
application on a coating helps minimize antimicrobial usage (Vodjani and Torres, 
1990). Antimicrobials most commonly used include organic acids and their salts. 
Incorporation of malic and lactic acid into soy protein coatings retarded microbial 
growth on fresh-cut melon (Eswaranandam et al., 2006). Alginate-based edible coat-
ings incorporated with essential oils of cinnamon, palmarosa, and lemongrass have 
been reported to be more effective to extend the microbiological stability of melons 
when compared to coatings without the essential oils (Raybaudi-Massilia et al., 2008). 
On the other hand, the acceptance of melons was decreased by addition of cinnamon oil. 
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The incorporation of the sulfur-containing amino acids N-acetylcysteine and gluta-
thione into edible coatings has been shown to reduce microbial growth (Oms-Oliu 
et al., 2008; Rojas-Graü et al., 2008).

Fresh-cut fruits can also be benefitted by the incorporation of antibrowning agents 
into edible coatings in order to retard color changes caused by oxidation of phenolic 
compounds by polyphenol oxidase (PPO) in presence of oxygen. The incorporation 
of ascorbic acid into edible coatings has been reported to retard enzymatic brown-
ing of fruits (Brancoli and Barbosa-Cánovas, 2000; McHugh and Senesi, 2000; 
Pérez-Gago et al., 2006). The thiol-containing amino acids, N-acetylcysteine and 
glutathione, incorporated into edible coatings, besides reducing microbial growth 
in fruit surfaces, were also effective to inhibit browning of fresh-cut fruits (Pérez-
Gago et al., 2006; Rojas-Graü et al., 2007b, 2008; Oms-Oliu et al., 2008), since they 
react with quinones formed during the initial phase of enzymatic browning to yield 
colorless products or to reduce o-quinones back to o-diphenols (Richard et al., 1992). 
Edible coatings containing sour whey have been demonstrated to be effective in 
reducing oxidative browning of cut apples, when compared to other coatings based 
on milk proteins (Shon and Haque, 2007).

14.6  FINAL CONSIDERATIONS

Edible coatings have demonstrated to be effective to increase stability of a vari-
ety of fresh and minimally processed fruits. Despite the great benefits from using 
edible coatings, commercial applications of this technology on a broad range are 
still very limited. Enhancement of the water resistance of polysaccharide films is 
still required, which can be obtained by chemical modification of the biopolymer 
matrix or incorporation of hydrophobic ingredients. Moreover, mechanical and bar-
rier properties of biopolymer films still need improvement. Several studies have tried 
to improve performance of biopolymers by incorporation of nanostructures such as 
nanocellulose (Azeredo et al., 2009, 2010) and nanoclays (Mangiacapra et al., 2006; 
Olabarrieta et al., 2006; Petersson and Oksman, 2006). However, the use of nano-
structures in edible coatings still requires careful investigation about their safety, 
since their size may allow them to penetrate into cells and eventually remain in the 
human body. Considering evidences supporting that nanoparticles can exhibit differ-
ent properties from the corresponding bulk materials, the need for accurate informa-
tion on their effects to human health is imperative.
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