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Natural antioxidants as stabilizers of frying oils�
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Frying is a very complex process and the applied conditions often overwhelm most endogenous and
added antioxidants. Synthetic antioxidants such as butylated hydroxytoluene (BHT), butylated
hydroxyanisole (BHA), and tert‐butylhydroquinone (TBHQ) are often added to processed oils to
retard oxidative degradation during storage and frying; however, beside their poor performance under
frying conditions, consumers’ acceptance of synthetic antioxidants remains negative due to their
perceived detrimental effect on human health. Consequently, there is a growing interest in the search for
effective natural antioxidants for frying applications, notably, from phenolic components of common
spices and herbs. The present study provides an overview of the literature on natural antioxidants,
sources, and their performance under frying conditions.

Practical applications: Sources and performance of natural antioxidants during frying were reviewed.
Despite abundance of data on the radical scavenging activity and antioxidant potency of some natural
antioxidants under storage conditions, there is still a dearth of information on their activity during frying.
This study revealed a number of under‐exploited sources of natural antioxidants that could be used to
improve the stability of frying oils.
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1 Introduction

Deep fat frying is the process of cooking foods by immersing
them in edible fat or oil at a temperature above the boiling
point of water, usually 150–200°C. Although an ancient food
preparation technique, frying has grown exponentially over
the last 50 years, and the consumption of fried food continues
to grow even in the midst of various campaigns against dietary
fat consumption. Indeed, frying is a very effective way of
cooking food, delivering products with desirable sensory
properties such as a golden crust, crispy texture, and unique
fried food flavors within a reasonably short amount of time.
During repeated frying, such as is happening in commercial
frying operations, the oil is continuously used at elevated

temperature, often topped‐up with fresh oil regularly. The
elevated temperature, continuous exposure to oxygen,
coupled with the presence of water from the food result in
a series of chemical reactions with consequent degradation of
the frying oil and food components. More than 500 different
chemical compounds have been detected as a result of the
complex reactions occurring during frying [1], and a number
of these compounds can compromise the sensory attributes,
shelf‐life, and safety of fried foods.

The presence of antioxidants in frying oils can extend both
the fry‐life of the oils and the shelf‐life of the fried products.
Simply put, antioxidants are compounds possessing the
ability to inhibit oxidation when present in food or biological
systems at comparatively lower concentrations to the
substrates [2]. Depending on the structural features of
the antioxidative compounds, the mechanism of action may
include: scavenging free radicals; chelating prooxidant metal
ions; quenching singlet oxygen; inactivating sensitizers;
creating oxygen barrier, and; decomposing or removing lipid
degradation products, among others. Whereas radical
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scavenging is generally considered as the predominant
antioxidant mechanism in biological systems and under
ambient and storage conditions (Fig. 1), it is becoming
increasingly evident that radical‐mediated deterioration may
be relatively less significant under frying conditions [3–5]. In
a typical frying operation, with the oxygen supply being rather
limited by solubility and steam blanketing from food, a non‐
radical, acid‐catalyzed di‐ and polymerization of unsaturated
fatty acid (Fig. 2) has been suggested to predominate [3–5].
The implication of this is that lipid antioxidants, which
operate almost exclusively by radical scavenging mechanism,
may perform poorly during actual frying operation despite
excellent activity under storage conditions. Based on the later
mechanism (Fig. 2), compounds such as phytosterols and
sesamolin, which can undergo acid‐catalyzed decomposition
reaction with activation energy lower than that of TAG

dimerization, are effective polymerization inhibitor even
though they exhibit negligible radical scavenging activity [5].
Further study is, however, required to verify whether the
acid‐catalyzed conversion of sterols such as b‐sitosterol to
steradienes is the principal antioxidant mechanism or the
radical scavenging activity of the produced steradienes.
According to Winkler and Warner [6], the presence of at
least two double bonds is a pre‐requisite for phytosterol
antioxidant acitivity. Similarly, additional study is required as
to whether the acid‐catalyzed decomposition of sesamolin is
indeed the protective mechanism or the excellent radical
scavenging activity of sesamol, its degradation product.

Antioxidants can further be classified into natural,
synthetic, or semi‐synthetic (chemically modified natural
antioxidants), based on source; and the natural antioxidants
can be endogenous, exogenous, or generated in situ.
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Figure 1. Radical mechanism for the formation of polar and non‐polar dimers.
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Endogenous antioxidants such as tocochromanols, phyto-
sterols, carotenoids, and phospholipids (Table 1) are part of
the unsaponifiable components of fats and oils, representing
about 5% of the total lipid composition [7] The antioxidant
performance of these endogenous minor components in
vegetable oils and fats under storage and frying conditions has
been adequately reviewed [8–10]. Surfice to say, however,
that due to some inherent shortcomings (e.g., weak
antioxidant activity, poor thermal stability, and loss during
processing) of the endogenous antioxidants, a number of
synthetic antioxidants including butylated hydroxytoluene

(BHT), butylated hydroxyanisole (BHA), and tert‐butylhy-
droxyquinone (TBHQ) are often added to improve ther-
mooxidative stability of fats/oils. Unfortunately, the use of
these common synthetic antioxidants has been limited due to
their failure to meet performance expectations, especially
under frying conditions, and their perceived detrimental
effect on human health [11]. Thus, the search for effective
exogenous antioxidants from natural sources to stabilize
frying oils remains an ongoing story, the recent trends being
the application of phenolic extracts from various parts of
plants.

In this review, literature reports on the performance of
applied natural antioxidants in vegetable oils/fats under frying
conditions are summarized. Potential sources, challenges,
and limitations of natural antioxidants for frying applications
are also enumerated.

2 Natural antioxidants

2.1 Endogenous

A number of naturally occurring minor components in edible
oils possess antioxidant activity, and are of great importance
to both storage and frying stability of oils (Table 1). As
previously mentioned, the capacity of these endogenous
minor components to protect oils/fats under frying conditions
has been adequately reviewed [8–10] and will only be briefly
mentioned in the present study.

The most important and often studied endogenous
antioxidants are the tocopherols and tocotrienols, collectively
referred to as tocochromanols (Fig. 3). It has been reported
that lipid peroxy radicals react with tocopherols much faster
(104–109M�1 s�1) than with lipids (10–60M�1 s�1) [12],
making them an excellent peroxy radicals scavengers and chain
breakers. Rossi et al. [13] reported a very strong positive
correlation between the radical scavenging capacity of different
refined oils and the total content of tocochromanols. Although
endogenous tocochromanols are the oils’ first line of defense
against oxidative deterioration, they are, however, thermally
unstable and offered limited protection during frying [8].

Phytosterols are the major constituents of unsaponifiables
present in edible oils [14], b‐sitosterol, campesterol,
stigmasterol, D5

‐avenasterol, and brassicasterol (Fig. 4) being
the most common. Whereas they offer no protection under
oxidative and storage conditions, phytosterols have been
reported to improve the frying stability of oils [15–18]. Older
literatures indicated that phytosterol’s antioxidant activity is
restricted to those with ethylidene side chain configuration,
such as avenasterol, fucosterol, vernosterol, and citrostadie-
nol [15–17]; however, it is becoming more evident that
alternative mechanisms may be involved in phytosterol
antioxidant activity considering recent reports on the
excellent anti‐polymerization potency of b‐sitosterol and
other phytosterols devoid of ethylidene side chain [5, 6, 19].
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Figure 2. Acid‐catalyzed non‐radical mechanism for the formation
of non‐polar dimer [3].

Table 1. Common antioxidative endogenous minor components in
edible oils

Class of compounds Examples

Hydrocarbons Squalene
Phytosterols b‐Sitosterol, sigmasterol
Tocochromanols a‐, b‐, g‐, d‐Tocopherol/tocotrienols
Phenolic compounds Phenolic acids, flavonoids, and

isoflavonoids
Carotenoids Carotenes, xanthophylls
Phospholipids Phosphatidylcholine,

phosphatidylethanolamine
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Acid‐catalyzed conversion of sterols into steradienes at
frying temperature has been suggested as a possible
mechanism [5, 18].

Squalene (Fig. 3) is a triterpene hydrocarbon widely
distributed in vegetable oils, with olive (10–1200mg/kg) and
rice bran oils (100–330mg/kg) containing the highest
amounts. While the antioxidant activity of squalene under
storage and oxidative conditions remain controversial, it is
generally agreed that squalene inhibits thermooxidative
degradation of oils under frying conditions [3, 15, 20, 21]
even though all available data were in a model heated oil
rather than in actual frying experiments.

A mixture of steryl ferulates (Fig. 5) found in rice bran oil
(g‐oryzanol) or corn fiber oil have also been shown to protect
frying oils against thermooxidative degradation [3, 5, 22, 23].
According to Winkler‐Moser et al. [23], steryl ferulates from
corn oil offered superior performance compared to the
mixture isolated from rice bran oil; highlighting structural

differences between the two groups of steryl ferulates, which
resulted in differential interaction with endogenous toco-
pherols. Although, the antioxidant activity of steryl ferulates
is attributed to the radical scavenging activity of the ferulic
acid moiety [24], other important mechanism may also be
involved during frying of food, including: (i) A competitive
acid‐catalyzed hydrolysis of the ferulate ester bond, which
may limit the degradative TAG dimerization reaction (Fig. 2)
and (ii) sequential release of secondary antioxidants (ferulic
acid and sterols) through hydrolysis which, in combination
with higher thermal stability, may extend the activity period of
steryl ferulates.

Sesamin, sesamolin, sesaminol, and sesamolinol (Fig. 6)
are lignan compounds naturally present in sesame oil, and
have been implicated in the oil’s high stability [25, 26].
Sesamolin is considered the precursor of sesamol, sesaminol,
and sesamolinol through a series of acid‐catalyzed hydrolytic
and intermolecular transformations [27]. According to
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Figure 4. Common phytosterols present in frying oils.
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Kochhar and Gertz [5] and based on the non‐radical
mechanism of frying oil degradation (Fig. 2), this acid‐
catalyzed decomposition of sesamolin, with activation energy
lower than that of TAG dimerization, may be the major factor
for the frying stability of sesame oil. On the other hand,
sesamol and sesaminol, the degradative products of sesamolin
are excellent radical scavengers and evidently contributed
to the overall stability of the oil [28, 29]. A recent study on
sesamol and a variety of lignans (nordihydroguaiaretic acid,
pinoresinol, secoisolariciresinol, enterodiol, piperonyl alcohol,
and sesamin) suggested sesamol as the most promising natural
alternative to synthetic antioxidant for frying application [30].
Unfortunately, the application of sesamol for frying applica-
tion is hampered by its high volatility and poor thermal
stability; this problem was partly circumvented by adding the
sesamol in batches during the frying process [31].

2.2 Exogeneous

Whereas common vegetable oil endogenous antioxidative
compounds, such as the tocochromanols, inhibit oxidative
deterioration during storage, they are markedly less
effective under the more stringent frying conditions [8].
The ineffectiveness of endogenous antioxidants during frying
are related to: (i) poor thermal stability resulting in premature
decomposition; (ii) high volatility resulting in evaporative
losses; (iii) insufficient concentrations consequent to losses
from refining and other processing steps; (iv) lack of proper

antioxidant synergist; and (v) insufficient potency, for
instance, due to a narrow antioxidant reaction mechanism,
which in most cases is limited to radical scavenging or chain‐
breaking mechanism.

To improve the frying performance of vegetable oils
and fats, external fortification is imperative, and a number
of (semi)synthetic and natural antioxidants has been devel-
oped and utilized for such purpose. Potential sources and
applications of exogenous natural antioxidants for enhancing
frying performance of oils/fats are discussed below.

2.2.1 Natural antioxidants from vegetable oils with
unique endogeneous antioxidants

Individual vegetable oils are naturally endowedwith their own
unique constituents and compositions of endogenous anti-
oxidants, and the effectiveness of these endogenous anti-
oxidants can change depending on the nature of the
substrates [10]. Thus, certain vegetable oils containing
antioxidants other than tocopherols, such as, virgin olive,
sesame, rice, wheat, and oat oils, have been added to other
oils/fats for improved frying stability [32].

Olive contains several classes of antioxidative phenolic
compounds, namely; phenolic acids (hydroxybenzoic and
hydroxycinnamic acid derivatives), phenylethyl alcohols
(tyrosol and hydroxyltyrosol), flavonoids (apigenin, luteolin),
lignans (pinoresinol and acetoxy pinoresinol), and secoir-
idoids (elenolic acid) [33, 34]. These components are largely
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Figure 6. Sesamol and some antioxidant lignans from sesame and flax oils.
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retained in virgin olive oil and are partly responsible for the
improved frying stability reported for the oil and its blends
with conventional oils such as canola and sunflower oils [35–
39]. Similarly, due to the higher antioxidant activity and
thermal stability of sesame lignans, conventional oils such as

canola, soybean, and sunflower are blended with sesame oil to
improve their frying stability [40–45]. For instance, Farhoosh
and Kenari [43], Alireza et al. [44], and Serjouie et al. [45]
attributed the improved frying stability of blends of sesame
and canola oils over pure canola oil to the activity of sesame oil
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lignans. Similarly, Chung et al. [40, 41] ascribed the superior
frying performance of a blend of soybean and sesame oils over
unblended soybean oil to the presence of sesame oil lignans.
Indeed, the purified lignans (sesamin, sesamolin, and
sesaminol) isolated from sesame seed oil significantly
improved the frying stability of soybean oil, lard, and methyl
linoleate [28–30, 46, 47]. Supplementing refined rapeseed oil
with up to 20% wheat germ oil or sesame oil improved the
frying stability of the rapeseed oil [48]. The commercial
product, Good‐fry1 oil, reportedly exhibiting high frying
stability was composed primarily of high‐oleic sunflower oil

delicately blended with a small portion of ‘dedicated’ refined
sesame oil and specially produced rice bran oil [49].

2.2.2 Natural antioxidants from agricultural and
processing by‐products

A number of agricultural and food processing by‐products
contain high concentration of antioxidative compounds,
mainly phenolics, that can be used to improve the stability of
frying oils and fats (Table 2). Olive leaves are agricultural
waste obtained from annual pruning of olive trees. According

Table 2. Studies evaluating phenolic extracts under frying conditions

Refs. Sources Fat/oil substrate Conditions

[54] Olive leaf, hazelnut leaf, hazelnut green leafy cover Canola oil Frying of dough patties at 180°C
[130] Andea mashua (Tropaeolum tuberosum) Soybean oil Frying of potatoes at 175°C
[192] Oregano Soybean Heating of oil at 180°C
[59] Grape seed Sunflower oil Heating at 180°C
[131] Inca munã (clinopodium bolivianum) leaves Soybean oil Frying of potatoes at 180°C
[154] Rosemary Sunflower Heating of oil ar 180°C
[193] Majorana syriaca Corn oil Frying of potato at 185°C
[194] Thyme flower Corn oil Frying of potato at 180°C
[129] Pompozia fruits Sunflower oil Frying of French fries 180°C
[53] Olive waste cake Sunflower oil Heating of oil at 180°C
[195] Mulberry leaves Rice bran oil Heating at 180°C
[150] Apple, blueberry, mangosteen, dragon fruits Peanut oil Potatoes immersed in fruit extracts

and then fried at 170°C
[196] Denatured carob fiber (Exxenterol1) Sunflower oil Heating at 180°C
[156] Curcuma longa (turmeric) leaf Palm olein Frying of French fries at 180°C
[157] Murraya koenigii leaf Palm olein Frying of French fries at 180°C
[134] Rooibos tea Soybean oil Rancimat at 120, 140, 160 and 180°C
[51] Olive leaf Sunflower, olive, and palm oils Pan‐frying at 175°C for 6 min
[132] Pandanus amaryllifolius leaf Palm olein Frying of French fries at 180°C
[153] Bamboo, green tea leaves Vegetable oil Mixed with wheat flour prior to

dough preparation, bread stick
deep‐fried at 180°C

[197] Greek sage and summer savory Virgin olive, refined olive,
sunflower and commercial
blend of oils

Heating at 180°C

[167] Black tea, garlic bulb, onion skin Corn oil Heating at 140°C
[198] Black tea leaves Corn oil Frying of potato at 180°C
[199] Oregano Cottonseed Frying of potato at 185°C
[126] Oleoresin rosemary, sage Palm olein Frying of potato at 180°C
[57] Citrus hystrix peel Palm olein Frying of fish crackers at 180°C
[124] Rosemary Rapeseed Frying of potato chips at 180°C
[58] Mung bean hull Soybean Heating at 180°C
[201] Cassia essential oil Rapeseed, soybean, sunflower,

peanut, palm oil
Frying of precooked beef at 130, 150,
and 190°C

[128] Corinander oleoresin, coriander essential oil Clarified butterfat (ghee) Frying of wet cotton at 180°C
[200] Rosemary Olive and sunflower Frying of potatoes at 180°C
[202] Rosemary Soybean Heating of oil at 180°C
[133] Spinach Soybean Flour dough fortified with spinach

powder and deep fried at 160°C
[56] Old tea leaves Rapeseed Frying of potatoes at 180°C
[203] Green tea, green coffee Lard Frying of fortified donuts at 180°C
[50] Olive leaves Sunflower Heating at 180°C
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to the study by Farag et al. [50], addition of crude juice
pressed from olive leaves to sunflower oil remarkably
increased the thermooxidative stability of the oil during
intermittent heating at 180°C for 5 h per day for five
consecutive days as measured by total polar components
(TPC), polymer formation, acid value, thiobarbituric acid
test, and peroxide value. According to the authors, crude olive
leaf juice at 800mg total phenols per gram of oil was superior
to BHT at its legal limit (200mg g�1). In a related study,
Chiou et al. [51] reported significant frying stability and
retention of endogenous tocopherols during domestic frying
of sunflower, olive, and refined palm oils fortified with
methanol extract of olive tree leaves. Addition of phenolic
extracts from spray‐dried olive mill waste water to a blend of
rapeseed (60%), sunflower (38%), and grape seed (2%) oils
resulted in improved frying stability and a lower accumulation
of acrylamide in prepared French fries [52]. The frying
stability of sunflower oil increased significantly in the
presence of ethanolic extract of olive waste cake added at
100–600mg/g during intermittent heating at 180°C for 4 h per
day for five consecutive days [53]. Contrary to the previous
studies on olive leaves extracts [50, 51], Aydeniz and
Yilmaz [54] observed no protective effect for olive leaf
aqueous ethanolic extract during an intermittent frying of
dough patties at 180°C in canola oil for 5 h per day for 7 days,
based on the formation of TPC, conjugated dienoic acids,
and turbidity of the frying oil. The observed differencemay be
related to the lower phenolic concentration (�160mg gallic
acid equivalent per gram of oil) used in the study. The
authors, however, reported a significant antioxidant and
antipolymerization activities (about 60% decrease in TPC)
for hazelnut green leafy cover, another agro‐by‐product [54].

Tea, derived from Camellia sinensis L., is one of the most
widely consumed beverages in the world [55]. For tea
production, young shoots, mainly the first two to four leaves
and a bud are typically selected, whereas old tea leaves, which
are not used in tea manufacture, are considered as
agricultural waste [56]. The methanolic extract of this
agricultural waste was reported to significantly protect
rapeseed oil against thermooxidative deterioration in the
course of frying 12 consecutive batches of potato crisps over a
period of 3 days (5min per batch) at 180°C, as measured by
the formation of polar components and the p‐anisidine
value [56]. The efficiency of the old tea leaves extract was at
least similar to that of rosemary extract at similar concentra-
tion of 0.1% [56].

In the study by Jamilah et al. [57], ethanolic extract of
citrus peel was added to refined, bleached, and deodorized
palm olein at 0.2% concentration and used to fry fish crackers
at 180°C for 5 h per day for 4 consecutive days. Analyses of
peroxide value, totox value, iodine value, viscosity, and
linoleic:palmitic acids ratio indicated strong antioxidant and
antipolymerization effects of the citrus peel extract [57]. In a
similar study, Duh et al. [58] reported that the methanolic
extract of mung bean hulls offered better protection for

soybean oil EFA than BHT at equivalent concentration
(100mg/g) during heating at frying temperature (180°C) for
2 h, based on the linolenic:palmitic acids ratio. A concentra-
tion‐dependent inhibition of thermooxidative deterioration
was also observed for the ethanolic extracts of grape seeds
recovered from grape pomace during microwave and con-
vective heating of sunflower oil at frying temperature [59].
Although extracts from a number of related agricultural
wastes such as apple pomace, peanut skin, apple peel, peach
peel, banana peel, potato peel, rice hull, buckwheat hull,
almond hull, cocoa hull, lentil hull, pistachio hull, and corn
cob have been shown to demonstrate good radical scavenging
activity and delay oxidation of edible oil under oxidative
conditions, they are yet to be evaluated for frying applica-
tion [60–78]. Generally, these agro‐industrial by‐products
habor more phenolic antioxidants than their primary
products [79–84].

Edible oil processing steps such as degumming, refining,
bleaching, and deodorization often result in significant
removal of some endogenous minor components possessing
promising antioxidant/antipolymerization potentials [85]. A
number of technologies are available or emerging for
economical recovery, reprocessing, and purification of these
by‐products, which can then be applied for extending
performance of frying oils. Lecithin, comprising primarily
of phosphatides such as phosphatidylcholine (PC), phospha-
tidylethanolamine (PE), phosphatidylserine (PS), phospha-
tidylinositol (PI), and phosphatidic acid (PA) is one of such
products. The addition of 0.1% soy lecithin remarkably
decreased the formation of lipid hydroperoxides and
polymers during frying in olive oil at 170°C [86]. The
thermooxidative stability of salmon oil heated at 180°C was
significantly improved in the presence of a phospholipid
fraction isolated from bluefish [87]. In a recent study, the
performance of PC and PE was evaluated during a model
frying of formulated food comprising of gelatinized starch,
glucose and silica (4:1:1) in canola oil TAG at 185°C [88]. At
a concentration of 0.05%, neither PC nor PE offered any
protection to canola oil TAG. However, at higher concen-
trations (0.1 and 0.2%), both phospholipids significantly
inhibited thermooxidative degradation of the oil as measured
by the amount of total polar compounds and the rate of
volatile carbonyl compounds and hydroxynonenal formation.
The application of phospholipids as frying oil antioxidants is
limited by their reported adverse effects on color and foaming
of oils [89]; however, according to Kourimska et al. [86],
addition of soy lecithin in an amount not higher than 0.2%
had no negative effect on foaming of the oil and the quality of
the prepared French fries. The observed antioxidant activity
of phospholipids has been attributed to: (i) their synergistic
activity with phenolic antioxidants such as tocopherols [90–
97]; (ii) the ability of the phosphate group to chelate
prooxidant metals [98, 99]; (iii) the formation of nonenzy-
matic browning reaction products between amino phospho-
lipids and sugar or lipid oxidation products [100–104]; and
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(iv) the ability of phospholipids to form an oxygen barrier
between the oil and air interface [105, 106].

Deodorization is a processing step during the production
of commercial edible oil in which steam is passed through the
oil at very low pressure and relatively high temperatures.
Under these conditions, significant amounts of oil’s endoge-
nous minor components are also removed from the oil, along
with other volatile impurities, and are concentrated in the
deodorizer distillate as by‐products [85, 107]. In a study by
Abdalla [108], unsaponifiable residues extracted from olive
oil deodorizer distillate were added to sunflower oil at
different concentrations, up to 1%, and the oil was used for
frying potatoes at 180°C for 8 h per day for 10 days. The
author reported a concentration‐dependent increase in
antioxidant and antipolymerization activity of the distillate
with an up to 60% increase in frying performance of fortified
sunflower oil as measured by anisidine value, peroxide value,
iodine value, and TPC formation. The protective effect
observed for the deodorizer distillate was attributed to the
presence of squalene, avenasterol, and tocopherols in the
mixture [108]. Due to the high level of impurities, such as
PAH and other oxidized volatiles formed during bleaching,
the application of deodorizer distillate as frying antioxidants
requires prior purification.

During the extraction of oil from the oilseed, phenolic
compounds are mostly retained in the meal due to their
relatively poor lipophilic nature, compared to other anti-
oxidants like the tocochromanols and phytosterols. Innova-
tive extraction methods are available or being developed for
economic recovery of these phenolic antioxidants toward
their applications in functional foods and nutraceuticals [109–
114]. Whereas the antioxidant activity of extracts from
deoiled meal/cake has been evaluated in bulk oil and oil‐in‐
water emulsion under oxidative and storage conditions [115–
117], there is a dearth of information on the utilization of this
by‐products for frying applications. De Leonardis et al. [118]
described the extraction of a powdery antioxidant product,
consisting of 58% caffeic acid, from partially defatted
sunflower seed shells, but the effectiveness as antioxidant
in edible oils was only evaluated under Rancimat condition at
130°C and 20L/h air flow.

2.2.3 Natural antioxidants from herbs and spices,
berries, and other vegetal sources

Spices and herbs such as rosemary, oregano, savory,
marjoram, sage, thyme, basil, clove, cinnamon, nutmeg,
turmeric, cumin, pepper, and garlic have long been
recognized as important sources of potent antioxidants [119–
123]. Active compounds present in most common spices and
herbs include phenolic mono‐ and diterpenes (e.g., carnosic
acid, carnosol, rosmanol, rosmadial, cavacrol, and thymol),
phenolic acids and derivatives (e.g., rosemarinic, caffeic,
gallic, ferulic, and protocatechuic), gingerol‐related com-
pounds (e.g., gingerol and shagoal) diarylheptanoids (e.g.,

curcumin, cassamunin A, B, C), phenolic amides (e.g.,
capsaicin and capsaicinol), and flavonoids (e.g., quercetin,
luteolin, apigenin, kaempferol, and isoharmnetin) (Fig. 7).
Whereas reports abound on the antioxidant activity of
extracts and components from various spices and herbs in
edible oils under ambient and storage conditions, inves-
tigations on their effectiveness during frying have received
relatively less attentions (Table 2).

In general, extracts from different parts of spices, herbs,
and fruits studied so far indicated their efficacy in inhibiting
thermooxidative degradation and extending the fry‐life of
vegetable oils (Table 2). For instance, commercial extract of
rosemary added at 0.1% concentration significantly inhibited
dimer formation and tocopherol degradation in rapeseed oil
during intermittent frying of potato chips at 162°C [124].
Commercially obtained oleoresin rosemary and sage extracts
at 0.04% markedly improved the frying performance of
refined, bleached, and deodorized palm olein, based on wet
and FTIR spectrometry measurements of peroxide value,
iodine value, and free fatty acid content of the oils after
extended frying at 180°C for 5 consecutive days [125]. The
study by Che Man and Jaswir [126] revealed a synergistic
interaction among rosemary extract, sage extract, and citric
acid that resulted in a significant stability of palm olein and
improved sensory scores of the fried food during extended
frying of potato at 180°C for 6 days. According to Yanishlieva
et al. [127], thermal degradation of sunflower oil TAG was
significantly inhibited in the presence of summer savory
ethanolic extract; the time to reach 73% unchanged TAG
(�27% TPC) increased by up to 14 h in the presence of the
extract during heating in an oven at 180°C for 8 h per day for
7 days. In a recent study, Patel et al. [128] reported a
significant improvement in stability of clarified butterfat
(Indian ghee) fortified with 0.5% commercial steam distilled
coriander extract and oleoresin in a model frying of wet
cotton balls at 180°C. The steam distilled extract reportedly
exhibited better performance than the oleoresin based on
the determination of conjugated dienes, thiobartituric acid
value, and the Rancimat at 120°C of the fried oils [128].
A recent data by Gertz and Matthaus (personal communica-
tion) also indicates a reduced effectiveness of rosemary
extract at elevated temperature and a dependency on
preparation method.

Apart from the more frequently studied common spices
and herbs, a number of vegetal sources including fruits and
berries also present viable sources for frying antioxidants.
Freeze‐dried, expelled juice from pompozia fruit (Syzygium
cumini; Myrtaceae) added at 0.12% offered significantly
better protection than BHT against thermooxidative deterio-
ration of sunflower oil during continuous frying of frozen
French fries at 180°C for 12 h [129]. According to Betalleluz‐
Pallardel et al. [130] ethyl acetate extract from the Andean
mashua (Tropaeolum tuberosum; Tropaeolaceae) tuber at
200mg phenolic equivalent/gram improved the stability of
soybean oil during frying at 175°C, based on the levels of
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conjugated dienes, conjugated trienes, free fatty acids, and
total polar compounds formed at the end of the 4‐h frying
period. Ethyl acetate extract of Inca munã (Clinopodium
bolivianum; Lamiaceae) leaves at 600mg phenolic equivalent/
gram exhibited significantly better antioxidant and antipoly-
merization activity than TBHQ (200mg/g) during frying of
potatoes in soybean oil at 180°C for 4.5 h as measured by the
formation of conjugated dienes, conjugated trienes, anisidine
value, and total polar compounds [131]. Pandanus amar-
yllifolius (Pandanaceae) leaves ethanolic extract was added to
palm olein (10 kg) at 0.2% concentration; the oil was used for
frying 14 batches at 200 g per batch of French fries for 2.5min
per batch at 30min interval for 8 h daily [132]. At the end of
the 5 days of frying, the level of total polar compounds was
reduced by about 35% and oligomer formation by 47% in the
presence of the extract [132]. The addition of freeze‐dried
spinach (Spinacia oleracea; Amaranthaceae) powder in flour
dough significantly decreased formation of polar compounds
in soybean oil during frying at 160°C for 20 h, and reduced
the accumulation of conjugated dienes and aldehydes in the
lipid of the fried dough during storage [133]. The extracts
from rooibos tea and green tea also improved the thermo-
oxidative stability of edible oils at frying temperatures [134].

Apple and berries, such as strawberry, elderberry,
chokecherry, blueberry, gooseberry, cranberry, and grape
contain significant amounts of phenolic antioxidants and a
number of underutilized wild and ornamental species
have been extensively characterized [135–141]. Presently,
the literature reports on the effectiveness of extracts from
these natural phenolic sources as antioxidants for frying
applications are rather scanty [59, 142–144]. In the recent
study by Sun‐Waterhouse et al. [144], apple phenolic extract
at a concentration of 300mg/g was incorporated into batters
that were subsequently used in the preparation of deep‐fried
potato fritters. The level of peroxide value, anisidine value
and free fatty acids in the extracted oil from the fritters
indicated that the phenolic extract significantly inhibited
thermooxidative deterioration of the canola oil used for the
frying [144]. We recently reported on the effectiveness of the
phenolic extracts from some Canadian small fruits, namely,
wood’s rose, hawthorn, chokecherry, crabapple, and rowan-
berry in inhibiting thermooxidative and polymerization
reactions in canola and sunflower oils during frying at
180°C for up to 2 days [145–147]. Thermooxidative
degradation in rapeseed oil was reduced by up to 30% in
the presence of phenolic extracts from rowanberry and
crabapple (500mg gallic acid equivalent/g of oil) during frying
at 180°C for 8 h per day for 2 days, based on the anisidive
value and accumulation of TPC and di‐ and polymerized
triacylglycerols (DPTG) [145]. In a similar study, the rate of
TPC formation was 2.07, 2.70, and 2.67% per hour for
samples fortified with phenolic extract from wood’s rose hip
with seed, BHT, and the control rapeseed oil, respectively,
indicating a significant inhibition of thermooxidative degra-
dation in the presence of the phenolic extract [146].

Besides extending the usage life of the frying oils, natural
phenolic extracts effectively inhibited the formation and
accumulation of toxic thermooxidative degradation products
in the fried foods. For instance, apple, elderberry, blueberry,
grape, and cherry extracts mixed with ground beef prior to
pan‐frying at 175–210°C improved stability and inhibited the
formation of toxic heterocyclic amines [148–150]. Marina-
tion of beef patties in an oil‐based marinade containing
grape seed and rosemary extracts prior to frying resulted in
up to 90% decrease in the level of individual carcinogenic
heterocyclic amines [151]. An 83% decrease in acrylamide
level was reported when potatoes were immersed in rosemary
extract (1 g/kg potatoes) for up to 1 h prior to frying at 180°C
for 4min [152]. Similarly, bamboo (0.1%) and green tea
(0.01%) extracts mixed with wheat flower for the preparation
of deep‐fried bread stick inhibited acrylamide formation by
more than 70% [153]. Formation of trans fat in sunflower oil
during heating at 180°C for 120 h was also significantly
inhibited in the presence of 0.1% rosemary extract [154].
Although relatively less reported, available data indicated that
the addition of plants extracts to frying oil did not negatively
affect the sensory attributes of the fried products [126, 134,
155–158], lending credence to their utilization as anti-
oxidants for frying applications. Further studies are needed
for most extracts, however, in order to establish optimum
concentrations for antioxidative performance without
compromising consumers’ acceptance of fortified oils and
the fried products.

The polyphenolic constitutents of antioxidative plant
extracts are more thermally stable than the common
synthetic and endogenous antioxidants (tocochromanols,
BHT, BHA, and TBHQ), which are easily degraded and
evaporated during frying [159–164]. According to Cordeiro
et al. [160], rosemary extract showed excellent stability at
frying temperature with only 6% mass loss at 190°C,
attributable to moisture and solvent loss. This relatively
higher thermal stability suggests that phenolic constituents
of applied extracts can survive the stringent conditions of
frying and be tranfered into the fried food where they can
continue to offer protection during storage (carry‐through
effect). Furthermore, whereas the efficacy of many conven-
tional antioxidants including tocopherols and BHT dramat-
ically decrease at frying temperatures, the effectiveness of
polyphenolic compounds (active constituents of antioxida-
tive extracts) appear to improve with temperature as
indicated by a number of studies, which may be related to
thermally enhanced dissolution. For instance, whereas
mixed tocopherol was more effective than rooibos tea
phenolic extract at protecting antioxidant‐free soybean oil at
120 and 140°C, the polyphenolic extract was significantly
more effective at 160 and 180°C [134]. Similarly, whereas
lavender and thyme incorporated in sunflower oil showed
no effect at 25°C, they dramatically increased stability
at 150, 180, and 200°C, based on analyses of free fatty
acids, peroxide value, and viscosity [165]. Elhamirad and
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Zamanipoor [166] evaluated the temperature‐dependent
antioxidant activity of a‐tocopherol, simple phenolic acids
(gallic and caffeic acids), and representative polyphenolic
compounds (catechin and quercetin) during thermal oxida-
tion of sheep tallow olein in a Rancimat. At 120°C, gallic and
caffeic acids were markedly more effective than the polyphe-
nolic compounds, but at 180°C, quercetin was the most
effective, catechin was comparable to gallic acid and more
effective than caffeic acid. At all temperatures, the polyphe-
nolic compounds were more effective than a‐tocopherol with
the difference being more pronounced at 180°C (�1.3 times
at 120°C and up to 5.1 times at 180°C). The temperature
effect may in part explain why no significant positive effect was
observed for black tea and garlic bulb polyphenolic extracts
during heating of corn oil at 140°C for 48h [167]. Neverthe-
less, the poor dispersal of extracts in oils coupled with the
hydrophilic nature of their phenolic constituents is a major
drawback to their applications in frying oils. Research into
novel methods for effective dissolution of extracts in oils,
including chemo(enzymatic) lipophilization of the phenolic
constituents, are rigorously being pursued, and a number of
excellent reviews on the topic are available in the litera-
ture [168–173].

2.3 In situ, secondary antioxidants

The inherent presence of various potential catalysts such as
water, acid, alkali, and metal ions in oils and food, and the
high operational temperature (>160°C) provides a unique
environment for a host of chemical reactions, both destructive
and constructive, during frying. Thermal decomposition of
endogenous and exogenous antioxidants can result in
secondary antioxidants with potent antioxidative poten-
tial [27, 174, 175]. For instance, thermal degradation of
sesamolin yielded sesamol, a very potent lipid antioxi-
dant [27], and the major components of the thermal
degradation of quercetin glycoside at 180°C was quercetin,
another antioxidative polyphenol [175]. Besides this antioxi-
dant degradation phenomenon, there is also the possibility of
composing new, in situ secondary antioxidants as a conse-
quence of some physico‐chemical reactions involving anti-
oxidants, food materials (starch and protein), and lipid
degradation products during frying. For instance, it was
recently observed that the reactions between endogenous
phytosterols and added phenolic acids during frying can
create a synergistic relationship through in situ formation of
steryl ferulates, a secondary antioxidant [176]. Indeed, the
influence of components’ molar ratios and other conditions
necessary for such in situ synthesis requires further inves-
tigations. For instance, according to Nasibullin et al. [177],
depending on the molar ratio, a stable, hydrogen bond‐
mediated complex can be formed between quercetin and
phospholipids by mixing at RT. This knowledge was recently
applied by Ramadan [178] in the formulation of a quercetin‐
enriched lecithin (phenolipid) that exhibited synergistic

action during accelerated storage of triolein and sunflower
oil at 60°C for 15 days.

Formation of Maillard reaction products (MRP) is
another example of heat‐induced in situ generation of
antioxidants during frying. Their formation, nutritional,
biological, and antioxidant activities have been extensively
reviewed [179–187]. Their formation involves reactions
between amine from amino acid or protein and carbonyl
moiety of sugar. However, in additional to amino acids and
proteins, it has been recognized that amino phospholipids
such as PE can react, via their amine group, with aldehydic
moiety of lipid oxidation products during frying to generate
MRP analogous compounds with potent antioxidant activi-
ty [100–104]. In a recent study, the products isolated from a
model heating of amino acids (glycine, lysine, and arginine)
and lipid oxidation‐derived aldehydes (hexanal, (E)‐2‐
hexenal) at 125°C for 2 h showed significantly stronger
radical scavenging activity than the corresponding unheated
initial reaction mixtures, suggesting a heat‐induced in situ
formation of melanoidin‐like antioxidant compounds [188].
According to Vhangani and Van‐Wyk [189], the antioxidant
activity of MRP isolated from fructose–lysine model system
heated at 60, 80, and 120°C for up to 2 h increased with
increased reaction temperature, thus, it is likely that many of
the MRP will offer improved antioxidant performance at
frying temperatures. Wagner et al. [190] reported that the
water‐soluble and water‐insoluble fractions of MRP formed
by a glucose–glycine model was effective at delaying hydro-
peroxides formation (by up to 23% at 60°C) in corn oil at
0.5% concentration, but not at 0.01 and 0.1%. According to
the authors, however, this high concentration (0.5%) may
not be practicable for the food industry due to color
changes [190]. No activity was observed for the MRP when
the storage temperature was increased to 200°C, based on the
peroxide value analysis [190]. In the recent study by
Miyagi [191], the oxidative stability of deep‐fried peanut
was significantly improved by extending the frying time up to
30min at 150°C to allow the formation of sufficient level of
MRP. Apart from their radical scavenging activity, it is
conceivable that the formation of MRP through reactions
involving lipid oxidation‐derived aldehydic compounds will
extend the fry life of oils through removal of these prominent
secondary lipid oxidation products. According to Wagner
et al. [190], the 4‐OH‐3(2H)‐furanones formed in the
reaction between glucose and glycine could generate
tocopherol from tocopheryl radicals, with potential to
enhancing oil stability.

3 Conclusions

In response to growing consumers’ interest in “natural”
products, the search for effective natural alternatives to
synthetic antioxidants is intensifying. Whereas common
vegetable oil endogenous antioxidative compounds such as

Eur. J. Lipid Sci. Technol. 2014, 116, 688–706 Natural antioxidants for frying applications 699

� 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ejlst.com



the tocochromanols can inhibit oxidative deterioration during
storage, they are markedly less effective under the more
stringent frying conditions. The ineffectiveness of endoge-
nous antioxidants during frying are related to: (i) poor
thermal stability resulting in premature decomposition; (ii)
high volatility resulting in evaporative losses; (iii) insufficient
concentrations consequent to losses from refining and other
processing steps; (iv) lack of proper antioxidant synergist; and
(v) a narrow antioxidant reaction mechanism, which in most
cases is limited to radical scavenging or chain‐breaking
mechanism. Phenolic extracts from: traditional spices and
herbs; wild/ornamental edible fruits, and other vegetal
sources; and agricultural and processing by‐products are
promising sources for natural antioxidants for frying
application. Despite abundant data on the antioxidant activity
of phenolic extracts from these natural sources, there is still a
dearth of information on their activity in edible oils under
frying conditions. Blending of frying oils with vegetable oils
containing unique endogenous antioxidants (e.g., virgin
olive, sesame, rice, wheat, and oat oils), and manipulation
of frying conditions and constituents in order to generate
active in situ secondary antioxidants during frying may offer
additional opportunity for enhancing performance of frying
oils with natural antioxidants. Whereas the effectiveness of
natural antioxidants in frying oil may not be in doubt, their
commercial application is undoubtedly without some chal-
lenges, considering: (i) possible inconsistency in activity
arising from (a) genetic, climatic, and geographical variations
in phenolic constituents of the vegetal source and (b)
extraction and preparation method; (ii) possible negative
impact of extract’s inherent color and flavor on the sensory
attributes of the frying oils and foods; (iii) possible co‐
extraction/contamination with some toxic or allergenic
compounds, (iv) poor lipophilic nature of antioxidative
phenolic constituents of extracts; and (v) significantly lower
market prices of available synthetic antioxidants compared to
the natural alternatives.

The complex interaction involving oxygen, water, and
components from food and the frying oil, initiated by high
temperature, over an extended period of time, makes frying a
unique process quite difficult to simulate. Consequently, the
activity and performance of antioxidants observed in a model
system and under storage/oxidative conditions may be at
variance to what is observed during frying, calling for the
needs to examine antioxidative materials using actual frying
experiments. The effect of applied phenolic extracts and other
natural antioxidants on sensory attributes of fried food is of
paramount importance, after all, consumers’ acceptance is
the ultimate judge of oil’s frying performance.
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